MasterPeace® Study - Detoxification Support Colloid Found to be Effective in Removing Bluetooth Signals from the Human Body

Field Tests and Analysis at Radlett, Hertfordshire, UK — April to June 2025 By the MasterPeace Research Team

11th of July 2025

INTRODUCTION

Research on the Bluetooth signals from the human body

The phenomenon of Bluetooth signals emitting from the body was initially observed in the beginning of 2021. It was associated with the Covid-19 vaccinations as there were numerous reports of magnetism on the site of vaccination broadly shared on the social media through the <u>magnet</u> challenges.

In a popular TV health show, The HighWire, this magnet challenge was repeated and it confirmed that in 6 out of 15 cases the magnet did stick to the vaccination site of the vaccinated (video). In this study from June 2021 conducted in Luxemburg 30 non-vaccinated individuals and 30 vaccinated individuals were tested for magnetism through attaching a magnet to the shoulder (at the vaccination site for the vaccinated). From the non-vaccinated group no one showed magnetism, while in 29 out of 30 vaccinated individuals' magnetism was confirmed.

Later information and videos on detecting Bluetooth signals from the human body were also shared on the internet. This led to the organizing of the first studies to identify if the reported Bluetooth MAC addresses did come from the human bodies. A <u>French study</u> was published in November 2021. The research team tested 20 non-vaccinated participants, 15 vaccinated and 2 non-vaccinated, who took PCR tests. No one of the non-vaccinated had a Bluetooth MAC address, one of the two PCR tested individuals had such an

address and 6 out of the 15 vaccinated individuals also had a Bluetooth MAC address.

In a Mexican study represented by the <u>BlueTruth documentary</u> which was released in May 2022 an experiment was recorded with six participants. The research was initiated by Dr Pedro Chavez Zavala, because he discovered not only magnetism with his patients, but variations in the EMF field, which indicated presence of radio signals. In the first round six participants were tested with no phones. The

equipment registered 2 MAC addresses out of the 6 participants. In the second round they let the participants have a mobile phone with WIFI and mobile data turned on and now all 6 participants had a MAC address. The video features also a cyber-security expert, Diego Barrientos, who explained how he was called by a local military base as they could not find out the source of the unidentified MAC addresses in the base and they

had 50 cm concrete walls and very rigid protocol regarding any electronic device, let alone transmission device. When they researched for the source, they found out that it was the human bodies within the base.

In <u>another study from 2021</u> Dr. Luis Miguel Benito de Benito from Spain did a research on 137 patients in at a remote clinic during the lockdown where he had close to ideal conditions for clean Bluetooth tests as because of the measures most people came alone at strict appointment times when there was nobody else in the building. Dr De Benito scanned for Bluetooth devices with his phone app after asking each patient to turn off their phones and meticulously recorded the data. Out of the 137 tested subject none of the 25 non-vaccinated individuals had a Bluetooth MAC address, while 96 out of the 112 vaccinated had an active MAC address.

Theoretical explanations

There are two theories of how the microelectronic nano structures are being assembled inside the bodies of people:

• Self assembling / Teslaphoresis

In 2016 Rice University scientists discovered that a specially designed Tesla coil causes carbon nanotubes to self-assemble into long wires: Teslaphoresis. Nanotubes can assemble themselves into wires, form a circuit and absorb energy from the Tesla coil and as seen on the video, this energy is enough to light mini LEDs. **Video**.

• Assembly through nano robots

In a <u>video</u> from 2022 Dr. David Nixon from Australia gives his interpretation on the development of the microstructure observed under microscope which appears to become a microchip through the coordinated action of what looks like nano robots at the sides of the growing chip. He claims that the nano chips are not self-assembled, but rather being built by external nano machines.

Graphene oxide – main element or part of the RF nano structure inside the human bodies

In a **key video from 2022** Ricardo Delgado from La Quinta Columna gives an elaborate explanation of the entire nano operation system inside the human body. In the presentation he explains that they have found nano routers, nano antennas and plasmonic antennas, nano rectennas which act as rectifier bridges of alternating/direct current, codecs and logic gates for the encryption of the nano communications. He explains that the primal material of the microstructures is graphene oxide.

On the other hand, as graphene oxide by itself is a conductor, but does not have semiconductor qualities required for the Bluetooth RF signal to be produced, it might be possible that it serves mainly as the passive component of the system, the antenna, while there are other nano semiconductor elements that build the active component of the nano telecommunication system. In a <u>video</u> from 2022 Dr Carrie Madej shares her findings of exploring solutions from covid 19 vaccines under the microscope and seeing "most

brilliant" colours like blue, yellow, purple. Nano tech specialists explained this event with the interaction of white light with superconductor, which indicates that the covid 19 vials contained nano size computer and telecommunication system.

In a **research** by Dr Robert Young published on his website on the February 5th 2021, it was reported that among other elements there were also Copper, Aluminium, Bismuth and Chromiun discovered in the covid 19 vials. All of these elements are conductive materials and could potentially play additional role in the formation of the nano RF transmitting system inside the human body.

Published studies

Numerous materials on internet indicate as explanation for the presence of these BLE signals a new nano technology based on graphene oxide which has self-assembling capabilities and can create microelectronic structures in the human body. Here are some published studies:

- Real-Time Self-Assembly of Stereomicroscopically Visible Artificial Constructions in Incubated Specimens of mRNA Products Mainly from Pfizer and Moderna: A Comprehensive Longitudinal Study
- CoVid vaccines based on graphene, nanonetwork and Internet of Nanothings (IoNT)
- <u>Cellular Nano-Transistor: An Electronic-Interface between Nanoscale Semiconductors and Biological Cells</u>

Patents

There are at least several patents connected with the nano technology based on graphene oxide that allows connecting the human body to the internet. This technology, as explained by biotech analyst Karen Kingston, is being wrapped inside the lipid nano particles of the vaccines (<u>Final Days film</u>). As she explains, when you take the magnetic hydrogel and introduce it into the cells, this is when the spike protein is being formed, so you're not infected with a virus, but with a nano-particle technology.

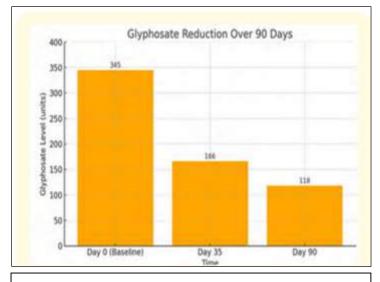
- In <u>this patent</u> from the Moderna company we see the following text: "In another embodiment, the polymer-based **self-assembled nanoparticles** such as, but not limited to, microsponges, may be **fully programmable nanoparticles**."
- In <u>another patent</u> of the Moderna company it says in the abstract: "The lipid nanoparticles include a cationic lipid, a neutral lipid, a cholesterol, and a PEG lipid." As Karen Kingston explains, what they are calling as lipids actually host cationic charges, which carry positive electromagnetic fields. As she explains, there is no lipid in nature that does that, so she concludes that they are using the term lipid instead of the term nano technology to describe this technical element in their patent.

The nano technology officially used as a bioweapon

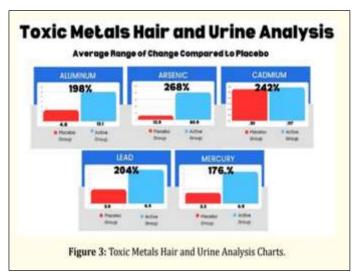
James Giordano, PhD, MPhil, an advisor to the US military in a video from 2008 discusses the usage of this lipid nano particle technology as neural weapons. In the <u>video</u> from the West Point Military academy he mentions how the latest achievements had allowed the stabilization of the nano particle solutions and the ability for this solutions to be aerosolized and that their presence can be extremely difficult to be detected.

<u>This patent</u>, is called Vaccine nanotechnology and it contains the following text: "In some embodiments, the small molecule is a toxin. In some embodiments, the toxin is from a **chemical weapon**, **an agent of biowarfare**, or a hazardous environmental agent."

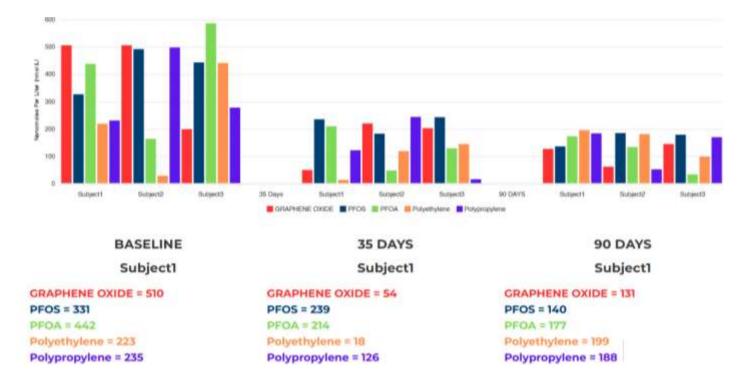
Toxicity of the graphene oxide for the human body


A number of research studies raise concern regarding the health consequences for the individual in connection with the toxicity of the graphene oxide. Here's what one of the quoted study mentions in this aspect:

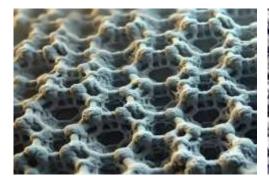
"Returning to graphene and its derivatives, it is possible to say that it is highly thrombotic, in fact, coagulated blood has been examined by several researchers: first of all Prof. Campra, but also Dr. Robert O. Young, who has published all his studies and findings, in great detail on his personal website: [15] Nano and Micro Graphene Tubes Cause Pathological Blood Coagulation Leading to Hypercapnia, Hypoxia and Death, Dr. Robert O. Young, MD., DSc, PhD, in Hikari Omni Publishing, 2021 and other scientists, among which Dr. Jose Louis Sevillano has distinguished himself for the warnings launched against the introduction of graphene in the population. In addition, the said nanomaterial presents genotoxicity, mutagenicity, high pulmonary toxicity, causes damage to the circulatory and cardiovascular system, nervous system, endocrine, reproductive, urinary, can lead to apoptosis (cell death), severe inflammatory state, immunosuppression, up to multi-organ dysfunction." Here's a list of 60 scientific publications regarding the toxicity of graphene oxide to humans and living organisms.


A collection of all most important findings on that matter from around the world can be found on the <u>Bluetooth Police website</u>, which was developed by one of the researchers, who also has his own contribution with original research, findings and presentations.

Research on the detoxification qualities of MasterPeace


The Human Consciousness Support Company has developed a product with the intention to create all-inone solution for detoxification of the body from the most common pollutants that are present in the modern world today. It consists of nano sized particles of natural zeolite within sea plasma. The alkaline character of the solution, 8.4 to 9.3 pH, together with the Oxidative Reduction Potential (ORP) of -100mV or more add to the efficiency of the formula. By the initial date of this study independent research has proven the detoxification effects of the product regarding toxic metals, hydrogel, forever chemicals, nanoplastics and glyphosate.

Glyphosate removal study



Toxic Metals removal study

Graphene Oxide, Forever Chemicals and Nano-plastics removal study

In respect to the current study, it is worth to mention the preceding studies on the MasterPeace product proving its ability to remove graphene oxide from the body. It is this element that scientists point out as the base construction material for the radio frequency nano technology inside the bodies of people which produces the Bluetooth MAC addresses. In a paper from 2024 Dr. Robert Young shares microscopic images of the molecular structure of the MasterPeace Zeolite Z in the Sea Plasma of the product and the effect this structure has on the graphene nano particles by attracting them and making them adhere to the surface, indicating the detoxifying effect this structure has regarding the nano particles of the graphene.

MasterPeace Zeolite Z in Sea Plasma: Electron Microscopic image

Attachment of Postive Charged Graphene Nano Dots to the Negative Charged Surface Area of MasterPeace Zeolite Z in Sea Plasma

The <u>study</u> on the ability of the MasterPeace product to remove graphene oxide from the human body showed a remarkable decrease of 89,4% in 35 days for one of the test subjects and 87.1% in 90 days for another one out of the three participants. This finding encouraged the team to undertake the current study to test the ability of the product to safely remove the Bluetooth MAC addresses from human bodies. The logical assumption is that if there is too little or no building material for the MAC addresses emitting hardware inside the human body, then no such signal could be produced.

STUDY PURPOSE

This exploratory study was conducted to evaluate the potential of MasterPeace in supporting the body's cleansing and detoxification processes, specifically in relation to the observed detection of MAC addresses emitted from human bodies.

STUDY DETAILS

Research Team: Caroline Mansfield and Manu / Momchil Pavlov.

No. of participants: Four adult participants

Duration of study: 78-days (11 weeks) from April 2025 to June 2025.

Location: Remote open field, Radlett, Hertfordshire, England.

The test was conducted in an isolated field in Radlett with ideal conditions for the Bluetooth maximum range of around 100 meters (\sim 300 feet), securing that there was nobody around except for the test subjects. The closest buildings as seen on the map are 174 meters (570.90 ft) away from the testing site. The exact location on Google maps is https://maps.app.goo.gl/wxCrWwjgYYfz5xFi6, 51°41'34.3"N 0°18'39.1"W.

Test group:

The test group consisted of 4 people – Natalie, Charlie, Chantal and Magda. All of them were vaccinated for COVID-19.

Internal Control group:

The internal control group consisted of 4 people – Caroline Mansfield (researcher), Manu - Momchil Pavlov (researcher), Christianne Van Wijk (camera lady) and Lisa (assistant). All of the members of the

control group were not vaccinated for COVID-19. None of the control group members had received a COVID-19 vaccination. Although they were not part of the primary study pool, they served as a consistent internal control. No MAC addresses were detected emitting from any of them at any point throughout the study, across all stages.

MasterPeace Dosage:

Days 1-52: 5 drops, twice daily.

From Day 53: Increased to 15 drops, twice daily.

Test Schedule:

• **Baseline:** April 5th 2025 (prior to intervention)

• Midpoint (Day 35): May 10th 2025

• End of Study (Day 78): June 22nd 2025

Each testing day was documented by an **independent film maker**, on the ground in real-time and including drone footage.

Testing Procedure:

The field was tested before and after the arrival of the participants in the study for Bluetooth signals. Mobile phones were turned off and no Bluetooth signal was registered at the spot of testing. Participants were tested in the duration of about 5 -10 minutes. As the signals were detected immediately, no additional time was required for detection with the used equipment.

Prior to arrival, participants had been instructed not to arrive with any Bluetooth wearable devices such as smart watches, ear buds etc.

- Each participant arrived at the field entrance at a specific time.
- The assistant escorted the participant to the testing site some 500 meters away from the entrance to the field.
- At the testing site the researchers would confirm with the participant they were not wearing any Bluetooth enabled devices
- The participant was scanned using professional-grade Bluetooth scanning equipment and specific apps.
- After the initial scan, the participant walked 50 steps away from the testing site and would pause, allowing MAC address tracking to occur using radar apps.
- Results were recorded and later MAC addresses analyzed and unpacked
- The assistant then brought the next participant to the testing site.

Participant Overview:

Participant 1: Natalia (Female, 38):

- 2 COVID vaccines (Pfizer and AstraZeneca)
- 10+ PCR tests during COVID period

Participant 2: Charlie (Male, 27)

- 3 COVID vaccines (Pfizer)
- 30+ PCR tests during the COVID period.

Participant 3: Chantal (Female, 27)

- 2 COVID vaccines (Pfizer)
- No PCR tests

Participant 4: Magda (Female, 34)

- 3 COVID vaccines (Pfizer)
- 50+ PCR tests

Results:

MAC Address Detection Over Time					
	Baseline	35 Days	78 Days		
Participant 1	2	2	0		
Participant 2	1	1	0		
Participant 3	1	1	0		
Participant 4	2	1	0		

Equipment Used:

The testing set-up mirrored that of the *BlueTruth* Documentary and the French Study, using professional-grade Bluetooth detection hardware and software. The MasterPeace study went a step further in this and:

- Used a very user-friendly Bluetooth detection system with the small and compact nRF sniffers, which at the same time are several times cheaper (approx. £20 vs £90 for the other).
- Created an installation package with installation guide for anyone to get set up in about 15 minutes and start working immediately compared to days or weeks of research and education needed if you're new to the subject. Here's the <u>Installation PDF</u> and the <u>Installation ZIP folder</u>.

The team used mobile phones in order to compare the reliability of the mobile phones Bluetooth scanning apps (an instrument widely available to the common user) to the readings of the professional equipment used by Bluetooth professionals. While in more than 90% of the cases mobile phones were able to detect the signals, the professional equipment was able to give much more detailed analysis, which helped with the identification of the exact type of the Bluetooth signal that was emitted from the bodies of the test subjects.

The initial idea was to conduct the study with the Ubertooth One wireless sniffer, which is mentioned in the **documentation** of the French study and also used in the Mexican study. The producer of the equipment, Scottish Gadgets, has discontinued the product for two years and there were only Chinese clones available at the market. We acquired two pieces, and both turned out to be faulty. Due to this reason, we used the in-built Bluetooth laptop adapter and a USB Bluetooth adapter at the baseline test together with Kali Linux OS and two Bluetooth scanning apps, Kismet and btmon. At the second testing date (35 days later) we introduced the Bluefruit nRF51822 LE Sniffer with the Wireshark app for detection and analysis. Both systems detected properly all the signals from our participants and as the

nRF sniffer with the Wireshark gave us much more information and was much easier to work with for data filtration, analysis and logging, we used just that for our second control test, which was the final one.

On the final test date we upgraded the nRF sniffer with the nRF52840 MDK USB Dongle, which can detect also Bluetooth 5 signals, while the Bluefruit nRF51822 sniffer can detect devices which use Bluetooth up to version 4.

Tools:

- Basic tools Mobile phones with Bluetooth scanning apps:
 - o **Tool 1**:

Hardware: Android Mobile phone DOOGEE S88 Pro with OS Android 10.0

Software: Bluetooth Scanning app "Bluetooth Scanner – Bluetooth finder – pairing" by Zoltan Pallagi

o **Tool 2**:

Hardware: Galaxy A16 5G

Software: Bluetooth Scanning app "BLE Scanner 4.0" by Bluepixel Technologies LLP

- Advanced tools Professional systems for Bluetooth activity analysis: Bluetooth adapter under Linux
 - Tool 3:

Hardware: Laptop (Acer Aspire E5-575) with Linux OSUSB Bluetooth adapter

Software: Kismet

o **Tool 4:** Same as tool 3, but software is btmon

nRF Bluetooth sniffers (w/ Windows)

Tool 5:

Hardware:

- Laptop (Acer Aspire E5-575) with Windows
- Bluefruit LE Sniffer nRF51822 (Firmware Version 2) /Produced by the Strawberry Pi co/

Software: Wireshark

Tool 6:

Hardware:

- Laptop (Acer Aspire E5-575) with Windows
- nRF52840 MDK USB Dongle (Bluetooth LE sniffer)

Software: Wireshark

Comparative table

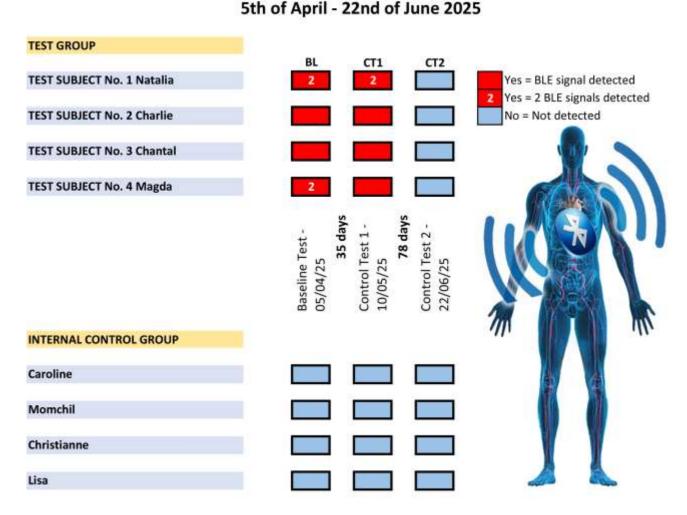
Too l No.	Hardware Description	Software	Key Features & Capabilities	Typical Use Case / Strengths	Limitations
1	Android Mobile Phone DOOGEE S88 Pro (Android 10)	Bluetooth Scanner – Bluetooth finder – pairing (Zoltan Pallagi)	Basic BLE scanning, device discovery, signal strength (RSSI)	Portable, easy to use, quick device detection	Limited packet analysis, less sensitive, fewer protocol details
2	Samsung Galaxy A16 5G	BLE Scanner 4.0 (Bluepixel Technologies LLP)	BLE scanning, device identification, RSSI, basic filtering	User-friendly, supports iOS/Android, good for field scans	Limited deep packet inspection, less control over scanning parameters
3	Laptop (Acer Aspire E5-575) with Linux OS + USB Bluetooth adapter	Kismet	Passive BLE scanning, multi- device tracking, MAC address logging, signal strength	Highly customizable, supports multiple adapters, good for long-term monitoring	Requires Linux expertise, moderate packet detail, no deep packet decoding
4	Same as Tool 3	btmon	Bluetooth packet capture, logs raw Bluetooth traffic	Useful for capturing raw Bluetooth packets for later analysis	Command-line interface, requires post- processing, less user- friendly
5	Laptop (Acer Aspire E5-575) with Windows + Bluefruit LE Sniffer (nRF51822)	Wireshark	Professional BLE packet capture and decoding, detailed protocol analysis	Industry-standard tool, deep packet inspection, supports filtering and protocol dissection	Requires setup, moderate cost (cost of a laptop), learning curve for Wireshark (easy to learn)
6	Laptop (Acer Aspire E5-575) with Windows + nRF52840 MDK USB Dongle	Wireshark	Advanced BLE sniffer with extended protocol support, high sensitivity, detailed packet analysis	Most advanced BLE analysis, supports latest BLE features, ideal for research and troubleshooting	Moderate cost (cost of a laptop), requires technical expertise (easy to learn), Windows environment

Short explanation regarding the tools

Basic Tools (Mobile Phones with BLE Apps):

Tools 1 and 2 are consumer-grade mobile phones equipped with BLE scanning apps. They provide quick and easy detection of nearby BLE devices, showing basic information like device names and signal strength. These tools are highly portable and user-friendly but lack the ability to capture and analyze raw Bluetooth packets or perform deep protocol analysis. They are suitable for initial surveys or casual scanning but limited for detailed research.

Advanced Tools (Professional Bluetooth Analysis Systems):


Tools 3 and 4 use a Linux laptop with USB Bluetooth adapters running specialized software (Kismet and btmon). Kismet offers passive scanning and logging of BLE devices with good multi-device tracking

capabilities, while between captures raw Bluetooth traffic for later analysis. These tools provide more control and data than mobile apps but require Linux proficiency and do not offer deep packet decoding out of the box.

Tools 5 and 6 employ dedicated BLE sniffers (Bluefruit LE Sniffer nRF51822 and nRF52840 MDK USB Dongle) connected to a Windows laptop running Wireshark. Wireshark is a professional-grade network protocol analyzer capable of decoding detailed BLE packet information, including manufacturer data, packet types, and timing. The nRF52840 dongle (Tool 6) supports the latest BLE standards and offers higher sensitivity and more comprehensive analysis than the nRF51822 (Tool 5). These setups are ideal for in-depth research, troubleshooting, and protocol development but require technical expertise and more complex setup.

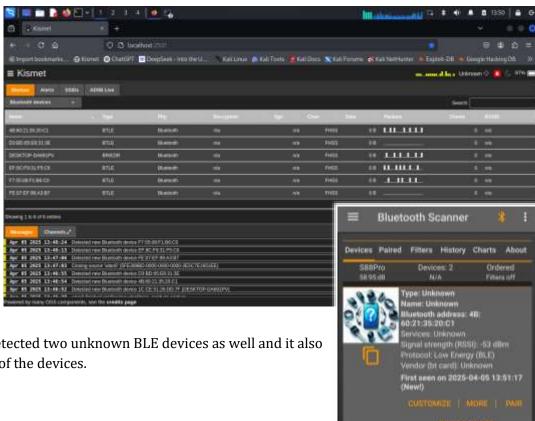
Test results - readings from the tools

BLE Signal Detection in Human Subjects. Testing the ability of the MasterPeace to eliminate Bluetooth emissions from the human body. Radlett, UK,

Data with screenshots from each participant

Test Subject No. 1: Natalia

Baseline Readings (05/04/2025)


Equipment used: Mobile phones | Kali Linux OS + Bluetooth adapter + Kismet app and btmon app

The first test subject entered the field at about 13:46. The btmon app was started and left to run in the background. Immediately after starting the btmon app the Kismet app was also started, and both Bluetooth adapters were activated from the Data Sources menu. (Technical note: btmon is a Bluetooth monitoring tool that captures and logs Bluetooth traffic on Linux. It listens passively to Bluetooth packets but does not itself send out Bluetooth advertising or inquiry signals that would make it appear as an active Bluetooth device to others. That is why it doesn't affect the results from the Kismet readings.)

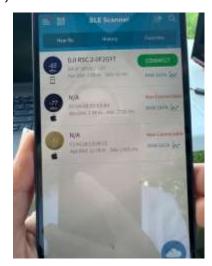
There were two BLE devices detected with the Kismet app at the presence of the subject. This was quite interesting to observe as at the preliminary tests the same phenomenon was registered with another test subject. A possible explanation might be that the graphene oxide nano technology could be creating multiple Bluetooth signals emitting devices inside the body. At some point the BLE devices became three and afterwards became five with two non-active and three active at a time. We believe that this could be due to the fact that this type of BLE devices change their MAC addresses over time, so the older addresses remained on the screen inactive while the new MAC addresses appeared later and were active. The screenshot shows also the active Bluetooth device (BR/EDR or Classic Bluetooth) of the laptop of the second researcher who remained on at the beginning of the tests. The white columns under the Packets label indicate the data transfer that is going on with the Bluetooth devices.

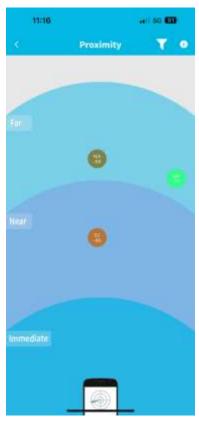
The Android mobile app detected the same BLE device as the first one on the Kismet app (same MAC address) but was not able to register the other BLE devices for the time-frame of the scanning it performed.

The Signal strength (RSSI) of -53 dBm indicates that the BLE device is a few meters away which corresponds to the distance the test subject was from the researchers and the testing equipment.

The Galaxy A16 mobile app detected two unknown BLE devices as well and it also indicated the same proximity of the devices.

Control Test 1 Readings (10/05/2025)

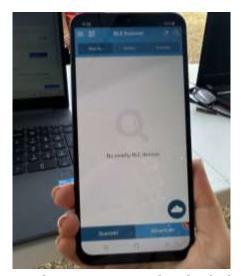

Equipment used: Mobile phones | Kali Linux OS + Bluetooth adapter + Kismet app and btmon app | Windows OS + Bluefruit nRF51822 LE sniffer + Wireshark

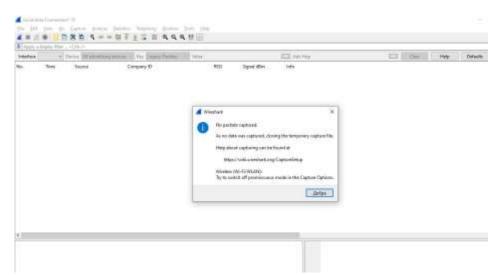

Test Subject 1 - Radlett, UK / 10 May 2025 File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help 🔏 🔳 💋 🎯 📙 🖺 🗙 🖒 🍳 🌣 🤝 警 春 🌷 📃 🗨 🔍 🔍 🛒 🔚 E No. Time Company ID RSSI Destination Info Source ADV_NONCONN_IND 32 0.196261 dc:97:ae:77:ca:3a -67 dBm Broadcast ADV_NONCONN_IND 1.479837 d3:86:bf:02:b5:d0 -81 dBm Broadcast d3:86:bf:02:b5:d0 -80 dBm ADV_NONCONN_IND 462 3.484222 Broadcast -67 dBm ADV_NONCONN_IND 547 4.203156 dc:97:ae:77:ca:3a Broadcast d3:86:bf:02:b5:d0 -76 dBm ADV_NONCONN_IND Broadcast 690 5.491208 dc:97:ae:77:ca:3a -68 dBm ADV NONCONN IND 6.206342 Broadcast 777 7.501238 d3:86:bf:02:b5:d0 -80 dBm Broadcast ADV NONCONN IND 945 969 8.215284 dc:97:ae:77:ca:3a -69 dBm Broadcast ADV NONCONN IND 9.505010 d3:86:bf:02:b5:d0 -80 dBm Broadcast ADV_NONCONN_IND 1137 -71 dBm ADV_NONCONN_IND 1230 10.219036 dc:97:ae:77:ca:3a Broadcast d3:86:bf:02:b5:d0 -77 dBm Broadcast ADV_NONCONN_IND 1398 11.513994 ADV_NONCONN_IND 1491 12.222475 dc:97:ae:77:ca:3a -70 dBm Broadcast ADV_NONCONN_IND 1752 14.229108 dc:97:ae:77:ca:3a -70 dBm Broadcast -80 dBm ADV_NONCONN_IND 1914 15.527154 d3:86:bf:02:b5:d0 Broadcast dc:97:ae:77:ca:3a -73 dBm Broadcast ADV_NONCONN_IND 1997 16.240158 ADV_NONCONN_IND 2094 17.530308 d3:86:bf:02:b5:d0 -80 dBm Broadcast -65 dBm ADV_NONCONN_IND dc:97:ae:77:ca:3a Broadcast 2180 18.240708 d3:86:bf:02:b5:d0 -80 dBm Broadcast ADV_NONCONN_IND 19.537900 2283 20.239120 dc:97:ae:77:ca:3a -67 dBm Broadcast ADV_NONCONN_IND 2376 2460 21.539224 d3:86:bf:02:b5:d0 -77 dBm Broadcast ADV_NONCONN_IND dc:97:ae:77:ca:3a -67 dBm Broadcast ADV_NONCONN_IND 2493 22.242935 dc:97:ae:77:ca:3a -68 dBm Broadcast ADV_NONCONN_IND 2682 24.244402 25.544367 d3:86:bf:02:b5:d0 -71 dBm Broadcast ADV_NONCONN_IND 2844 ADV_NONCONN_IND 2940 26.251589 dc:97:ae:77:ca:3a -69 dBm Broadcast ADV_NONCONN_IND d3:86:bf:02:b5:d0 -69 dBm 3104 27.555500 Broadcast -68 dBm ADV_NONCONN_IND dc:97:ae:77:ca:3a Broadcast 3194 28.262736 d3:86:bf:02:b5:d0 -69 dBm Broadcast ADV NONCONN IND 3411 29.924276 dc:97:ae:77:ca:3a -70 dBm Broadcast ADV_NONCONN_IND 3456 30.261860 d3:86:bf:02:b5:d0 -71 dBm Broadcast ADV_NONCONN_IND 31.930407 3666 -69 dBm 32.269042 dc:97:ae:77:ca:3a Broadcast ADV NONCONN IND 3705 3900 33.939244 d3:86:bf:02:b5:d0 -73 dBm Broadcast ADV NONCONN IND 3951 34.279401 dc:97:ae:77:ca:3a -68 dBm Broadcast ADV_NONCONN_IND 35.939248 d3:86:bf:02:b5:d0 -72 dBm Broadcast ADV_NONCONN_IND 4167 -69 dBm ADV_NONCONN_IND 4212 36.287952 dc:97:ae:77:ca:3a Broadcast ADV_NONCONN_IND d3:86:bf:02:b5:d0 -73 dBm 4431 37.942067 Broadcast ADV_NONCONN_IND dc:97:ae:77:ca:3a -69 dBm Broadcast 4479 38.289464

We used the filter to remove the captured Bluetooth signals from the gimbal of our camera lady and the GoPro camera of one of the researchers.

The Bluefruit sniffer detected two different MAC addresses which are displayed in different colours, white and blue. As we can see, one of the MAC addresses emits a bit stronger signal (RSSI column), compared to the other. The type of signal emitted is classified as ADV_NONCONN_IND (Info column), which means non-connectable, which is common for beacons and hidden devices. It's like the device saying, 'I speak, you listen', no communication, just a signal based on which the receiving device can undertake some action or simply register information.

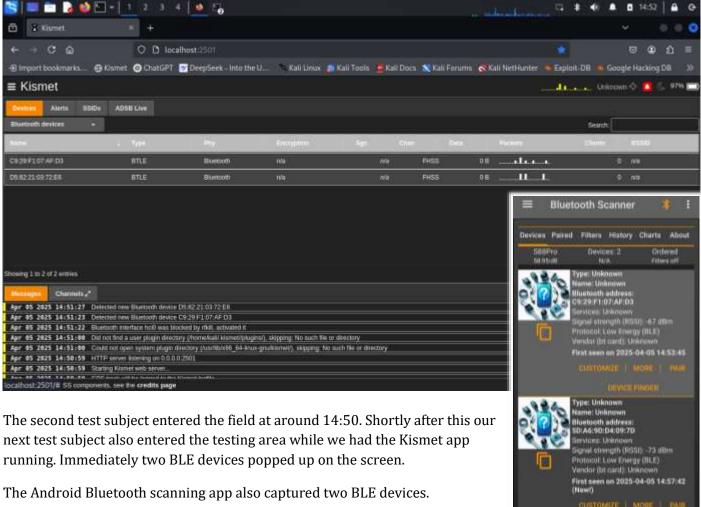
There were two BLE devices detected with the Kismet app. The Android BLE Scanner App Blue Pixel Technologies detected three BLE devices, **two unknown BLE devices** and one named device (DJI BLE is the Gimbal Bluetooth Address used by the camera lady). The Android Bluetooth Scanner, Finder Pair by Zoltan Pallagi phone detected just one unknown BLE device.



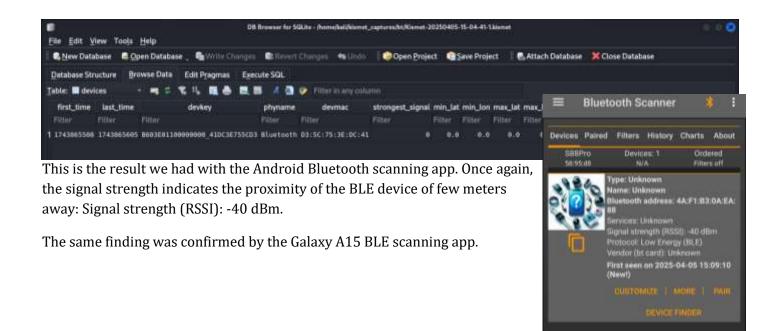


Control Test 2 Readings (22/06/2025)

Equipment used: Mobile phone | Windows OS + nRF52840 MDK USB Dongle sniffer + Wireshark



No devices registered on both the mobile phone and the Wireshark app.


Test Subject No. 2: Charlie

Baseline readings (05/04/2025)

Equipment used: Mobile phones | Kali Linux OS + Bluetooth adapter + Kismet app and btmon app

We covered our test subject with the Faraday fabric that was at hand and tested again. Now we got one BLE device. The screenshot is from the SQL database log file of Kismet:

Control Test 1 Readings (10/05/2025)

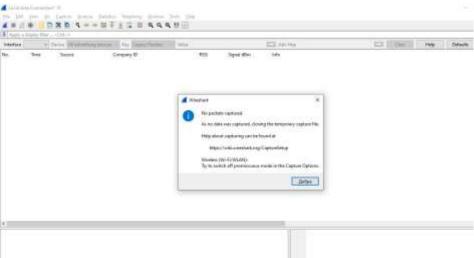
Equipment used: Mobile phones | Kali Linux OS + Bluetooth adapter + Kismet app and btmon app | Windows OS + Bluefruit nRF51822 LE sniffer + Wireshark

The second test subject entered the field at about 12 noon. Once again, we observed the same unusual presence of an unknown device.

Test Subject 2 - Radlett, UK / 10 May 2025 File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help | 🛅 🔀 🖒 🭳 👄 🕯 ≊ 🗿 🎩 📃 🖳 🔍 🔍 🖽 🖽 No. Time Company ID RSSI Destination Info Source ADV_NONCONN_IND 224 1.715156 cd:60:8b:e1:ff:5d -76 dBm Broadcast 467 3.715283 cd:60:8b:e1:ff:5d -78 dBm Broadcast ADV NONCONN IND 554 5.724369 cd:60:8b:e1:ff:5d -80 dBm Broadcast ADV_NONCONN_IND 719 7.731553 cd:60:8b:e1:ff:5d -80 dBm Broadcast ADV NONCONN IND ADV_NONCONN_IND 896 cd:60:8b:e1:ff:5d -77 dBm 9.736794 Broadcast ADV_NONCONN_IND 1142 11.750240 cd:60:8b:e1:ff:5d -77 dBm Broadcast ADV_NONCONN_IND 1364 13.754250 cd:60:8b:e1:ff:5d -76 dBm Broadcast 1619 15.765082 cd:60:8b:e1:ff:5d -77 dBm Broadcast ADV NONCONN IND ADV_NONCONN_IND cd:60:8b:e1:ff:5d -80 dBm Broadcast 1837 17.765839 2009 19.769002 cd:60:8b:e1:ff:5d -75 dBm Broadcast ADV NONCONN IND ADV_NONCONN_IND 21.770601 cd:60:8b:e1:ff:5d -77 dBm Broadcast 2201 ADV_NONCONN_IND 2362 23.774326 cd:60:8b:e1:ff:5d -77 dBm Broadcast 2504 25.778714 cd:60:8b:e1:ff:5d -79 dBm Broadcast ADV_NONCONN_IND 2738 27.779490 cd:60:8b:e1:ff:5d -78 dBm Broadcast ADV_NONCONN_IND

The power of the signal indicates a possible distance of several meters and the type of the signal ADV_NONCONN_IND (non-connectable). The time intervals between the packets are additional confirmation that this signal is typical for a beacon device. The only different element is the MAC address, which indicates that this device is different to the first two detected by the system with our first test subject.

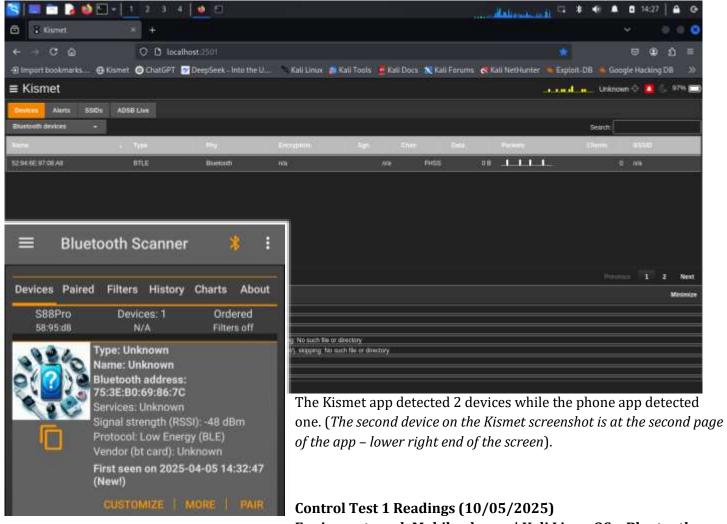
The Android BLE Scanner App Blue Pixel Technologies detected **one unknown BLE device** and two named devices (DJI BLE is the Gimbal Bluetooth Address used by the camera lady and GoPro BLE is the GoPro Camera turned on by the first researcher).



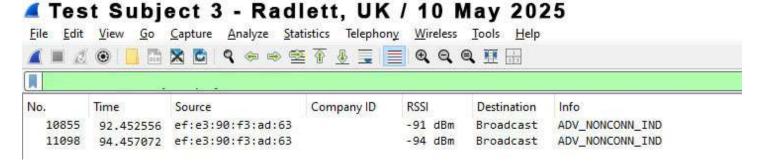
Control Test 2 Readings (22/06/2025)

Equipment used: Mobile phone | Windows OS + nRF52840 MDK USB Dongle sniffer + Wireshark

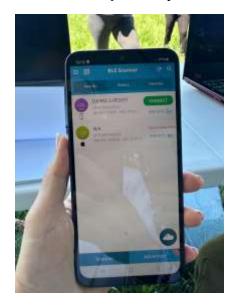
No readings on both the phone and the nRF52840 MDK USB Dongle sniffer with Wireshark.

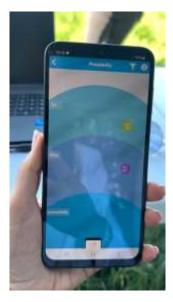


Test Subject No. 3: Chantal

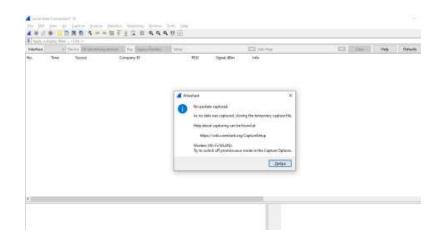

Baseline readings (05/04/2025)

Equipment used: Mobile phones | Kali Linux OS + Bluetooth adapter + Kismet app and btmon app


Equipment used: Mobile phones | Kali Linux OS + Bluetooth

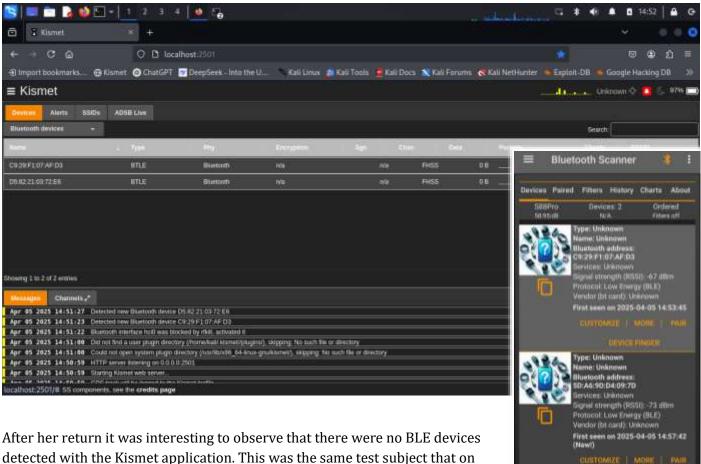

adapter + Kismet app and btmon app | Windows OS + Bluefruit nRF51822 LE sniffer + Wireshark

We captured just two packets of the same type of device that we registered with our first two subjects. MAC address is different device), and the signal strength (RSSI) is a bit weaker.


The Android BLE Scanner App Blue Pixel Technologies detected one unknown BLE device and one named device (DJI BLE is the Gimbal Bluetooth Address used by the camera lady). Note: the GoPro Camera has been turned off for the remainder of the study, so as not to give a GoPro BLE device reading)

Control Test 2 Readings (22/06/2025)

Equipment used: Mobile phone | Windows OS + nRF52840 MDK USB Dongle sniffer + Wireshark No readings on both the phone and the nRF52840 MDK USB Dongle sniffer with Wireshark.



Test Subject No. 4: Magda Baseline readings (05/04/2025)

Equipment used: Mobile phones | Kali Linux OS + Bluetooth adapter + Kismet app and btmon app

Our test subject 4 entered the testing area while the previous subject was still there. Immediately two BLE devices popped up on the screen. We asked her to walk a distance of 100 meters to allow us to complete the testing with the previous subject.

both preliminary tests showed positive results with the second test showing on

the Kismet application two BLE devices at a time. Also, the second unknown BLE device with the previous subject appeared simultaneously with the entrance of this subject into the testing field. What was the reason for having no reading with the Kismet is something we have no explanation of. It could be that there are some cycles of activation of the unknown BLE devices, or they can go silent after some period of giving out the initial signal. The test with the Android Bluetooth scanning application also didn't show any result, while the Galaxy A15 application did capture an unknown BLE.

Control Test 1 Readings (10/05/2025)
Equipment used: Mobile phones | Kali Linux OS + Bluetooth adapter + Kismet app and btmon app |
Windows OS + Bluefruit nRF51822 LE sniffer + Wireshark

■ Test Subject 4 - Radlett, UK / 10 May 2025 File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help □ Apply a display filter ... < Ctrl-/> No. Time Company ID Source RSSI Destination Info 0.000000 d3:e7:01:27:25:8c -80 dBm Broadcast ADV NONCONN IND 1 2 2.005254 d3:e7:01:27:25:8c -98 dBm Broadcast ADV NONCONN IND 4.005810 d3:e7:01:27:25:8c -85 dBm ADV_NONCONN_IND 3 Broadcast ADV_NONCONN_IND 4 6.006317 d3:e7:01:27:25:8c -82 dBm Broadcast Broadcast ADV_NONCONN_IND 8.009818 d3:e7:01:27:25:8c -93 dBm 5 d3:e7:01:27:25:8c Broadcast ADV NONCONN IND 6 10.009757 -92 dBm 7 12.011526 d3:e7:01:27:25:8c -80 dBm ADV NONCONN IND Broadcast 8 18.024401 d3:e7:01:27:25:8c -96 dBm Broadcast ADV_NONCONN_IND 9 20.032502 d3:e7:01:27:25:8c -87 dBm Broadcast ADV_NONCONN_IND Broadcast ADV_NONCONN_IND 22.035618 d3:e7:01:27:25:8c -80 dBm 10 24.043406 d3:e7:01:27:25:8c -90 dBm Broadcast ADV NONCONN IND 11 ADV_NONCONN_IND 12 26.045290 d3:e7:01:27:25:8c -84 dBm Broadcast Broadcast ADV_NONCONN_IND 13 28.049606 d3:e7:01:27:25:8c -79 dBm 30.054686 d3:e7:01:27:25:8c -89 dBm Broadcast ADV_NONCONN_IND 14 32.056675 d3:e7:01:27:25:8c -81 dBm Broadcast ADV_NONCONN_IND 15 -79 dBm ADV_NONCONN_IND 34.060937 d3:e7:01:27:25:8c Broadcast 16 36.068758 d3:e7:01:27:25:8c -85 dBm Broadcast ADV_NONCONN_IND 17 Broadcast ADV NONCONN IND 18 38.073003 d3:e7:01:27:25:8c -85 dBm

-82 dBm

-84 dBm

-87 dBm

-83 dBm

-94 dBm

-87 dBm

-87 dBm

-91 dBm

-88 dBm

-85 dBm

-92 dBm

-93 dBm

-82 dBm

-84 dBm

-87 dBm

-82 dBm

-94 dBm

Broadcast ADV NONCONN IND

Broadcast ADV_NONCONN_IND

Broadcast ADV_NONCONN_IND

Broadcast ADV NONCONN IND

Broadcast ADV_NONCONN_IND

Broadcast ADV_NONCONN_IND

Broadcast ADV_NONCONN_IND

Broadcast ADV_NONCONN_IND Broadcast ADV NONCONN IND

Broadcast ADV NONCONN IND

Broadcast ADV_NONCONN_IND

ADV NONCONN IND

ADV NONCONN IND

ADV_NONCONN_IND

ADV NONCONN IND

ADV_NONCONN_IND

ADV_NONCONN_IND

Broadcast

Broadcast

Broadcast

Broadcast

Broadcast

Broadcast

19

20

21

22

23

24

25

26

27

28 29

30

31

32

33

34

35

40.076293

46.092912

48.093305

50.097626

52.097906

54.105955

56.114184

58.114740

60.123615

62.131986

64.141605

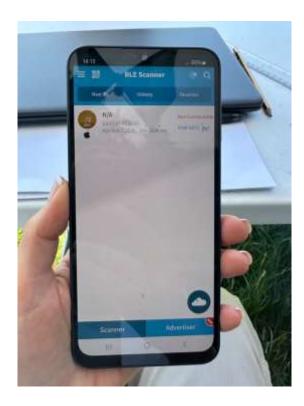
66.141157

68.141829

70.142127

72.143893

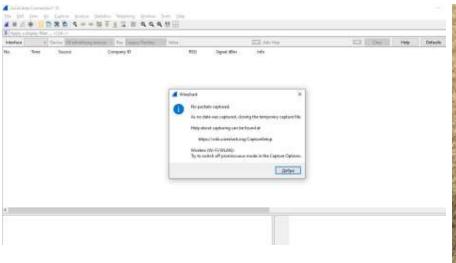
74.145720


78.162289

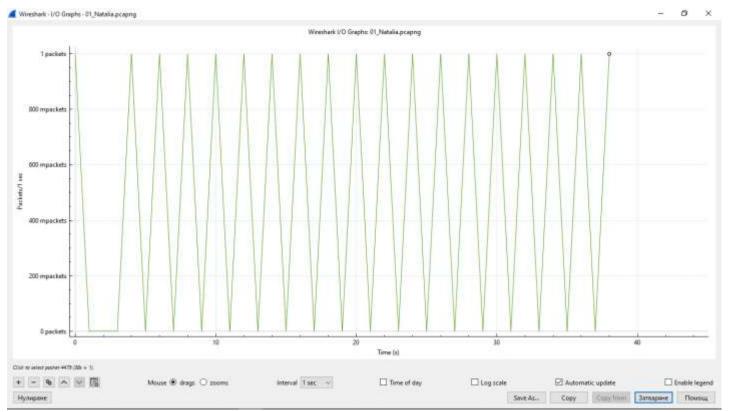
d3:e7:01:27:25:8c

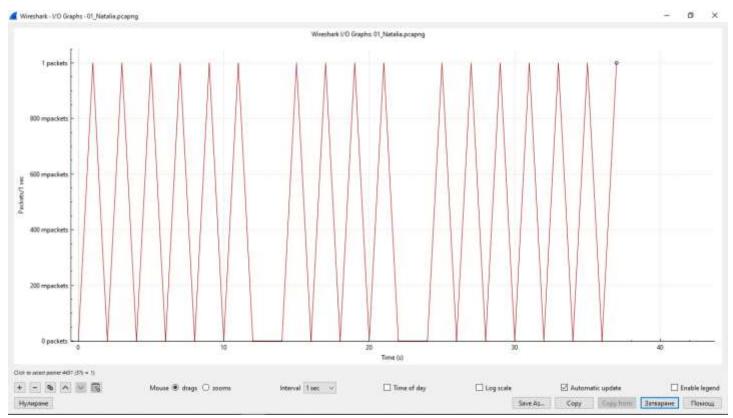
As with this subject all other Bluetooth interferences were already eliminated these were the only packets detected by the Wireshark, hence no filter applied and the numbers from the No. column indicate the consecutive order of all the packets from the same MAC address. Once again, we see the exact same picture with the exact same type of device, but with a new MAC address.

The results from the Kismet and the Android Apps were in congruence with the findings of the Bluefruit Sniffer + Wireshark detection and analyzing system.

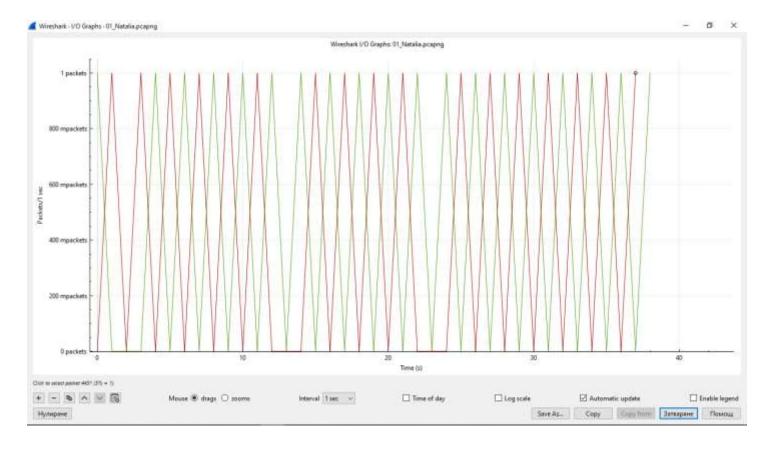

The Android BLE Scanner App Blue Pixel Technologies detected one unknown BLE device and no other named devices.

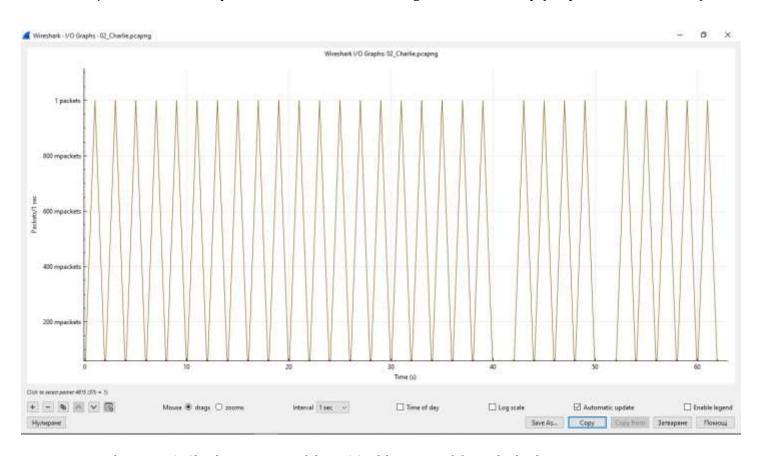
Control Test 2 Readings (22/06/2025) Equipment used: Mobile phone | Windows OS + nRF52840 MDK USB Dongle sniffer + Wireshark

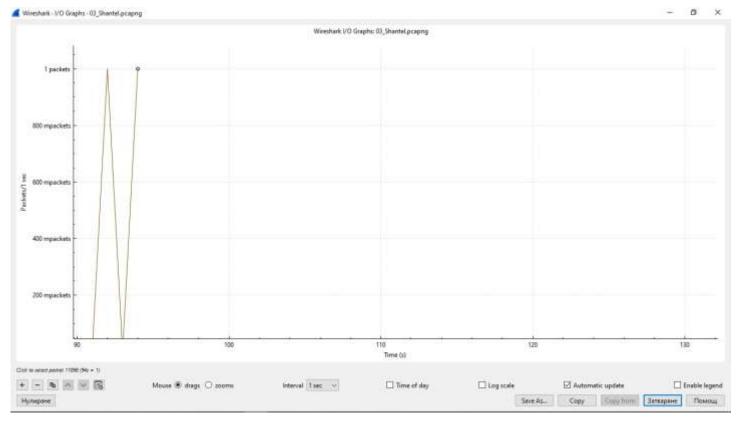

No readings on both the phone and the nRF52840 MDK USB Dongle sniffer with Wireshark.

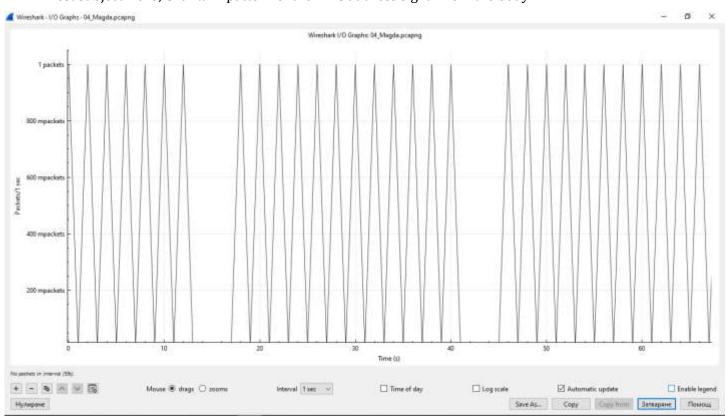


Visual pattern analysis

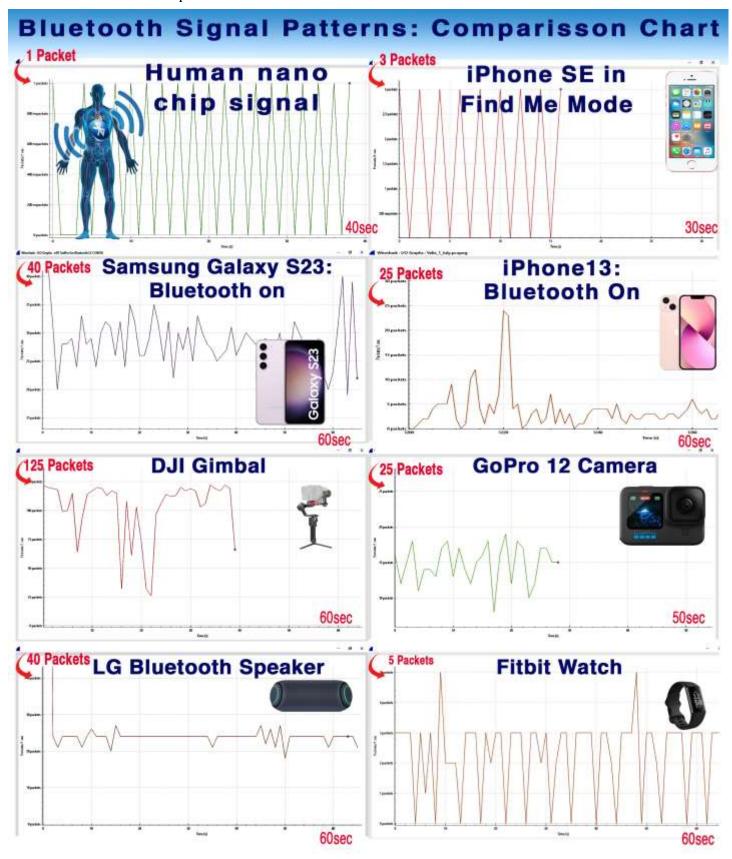

The visual pattern analysis gives a fast and clear picture of the character of the signal, especially when comparing it to other types of signals. The Wireshark application offers such analysis through the I/O Graphs option in its Statistics menu. The Y value represents the number of packets, while the X value indicates the seconds in which these packets were emitted.

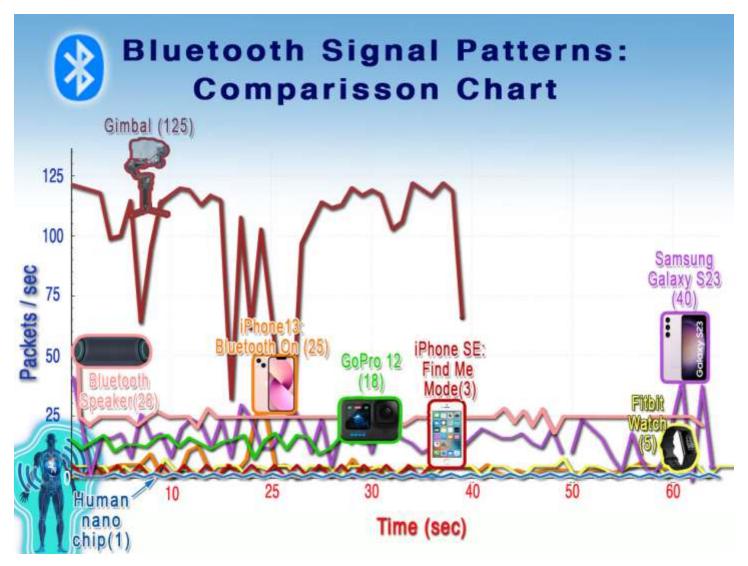

Test subject No. 1, Natalia – pattern of the first MAC address signal from the body (she had two).


Test subject No. 1, Natalia – pattern of the second MAC address signal from the body (she had two).


Test subject No. 1, Natalia – pattern of both MAC address signals from the body (Graph 1 and 2 combined).

Test subject No. 2, Charlie – pattern of the MAC address signal from the body

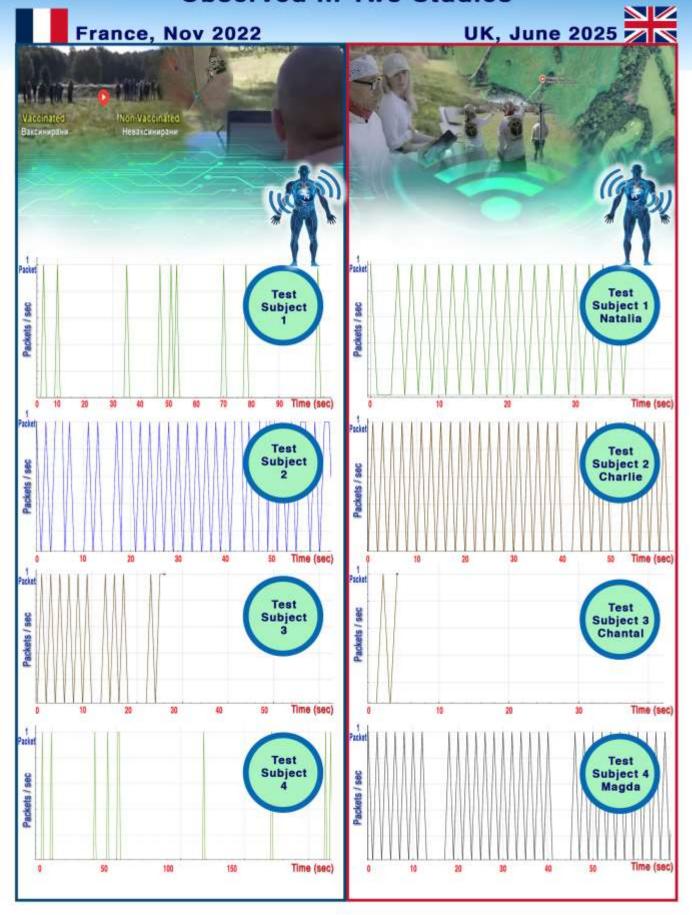

Test subject No. 3, Chantal - pattern of the MAC address signal from the body


Test subject No. 4, Magda – pattern of the MAC address signal from the body

As we can see all detected signals emitted by the MAC addresses from the bodies of all our test subjects follow the exact same pattern of emitting 1 packet in around 2 seconds with just here and there some interruptions, which should be considered as normal as the RF signals producing hardware inside the body is way more unstable due to the challenging environment.

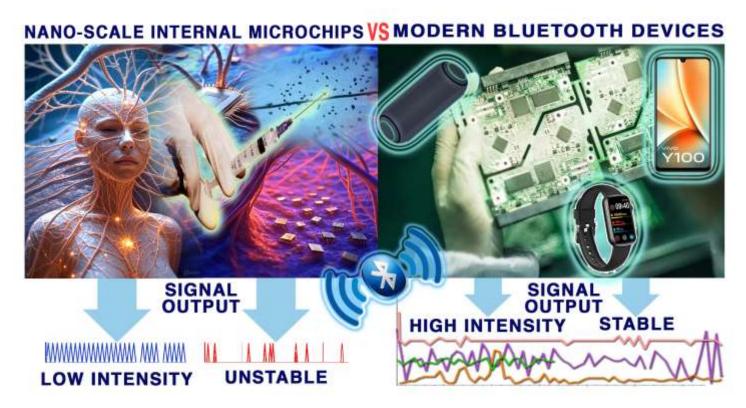
But how do these signals relate to the other ones that are emitted by the mobile phones and other devices? Here are a few examples:

As we can see, the signals that were detected from the test subjects are clearly completely different in their character compared to any other known common device. They have the lowest number of packets and frequency of emission, clearly because of lack of processing and energy power due to the miniature size, the type of construction and the challenging environment they are placed in.


Once again the same visualizations, but this time combined in one single chart for even a clearer comparison. The signal which is closest to the signal emitted from the human body is the iPhone SE when in Find Me mode. Yet it releases 3 packets about every 2 seconds, while the signal from the human body emits just one single packet in every 2 seconds. Next one is the Fitbit Watch, but the signal there varies between 3 and 5 packets in around 3 seconds. All the rest have much higher activity level compared to the first ones.

COMPARATIVE ANALYSIS WITH OTHER RESEARCH

As this new information that the Wireshark delivered caught our interest we decided to dig a bit deeper into it by doing an additional research by analyzing the results from the <u>French study</u>. <u>Project Bluetooth expérience X</u> from 2021 as they shared the results of their findings through their <u>Wireshark database file</u>.


The next comparative chart which uses the visualization received through the I/O Graphs option in the Wireshark app, illustrates that there is concurrence between in the Bluetooth signal pattern of some of the registered devices.

Bluetooth Signal Patterns of Human Nano Chips Observed in Two Studies

The shown devices are obviously of one and the same type. There's always just one packet sent and it happens around every 2 seconds. There's only one main difference and that is the unstable character of the majority of the signals in the French study. This is completely normal having in mind the lack of constant power, the construction stability and the challenging working environment this nano technology is given inside the human body.

To summarize the reasons why it is completely logical to detect this type of Bluetooth signal from the internal nano chips, let's look into the following table.

Feature	Nano-Scale Internal Chips	Modern Bluetooth Devices	
Size of Equipment	Nanometers to micrometers — extremely small; limited antenna and processing capability.	Centimeters in size — ample space for antennas, chips, shielding, and cooling.	
StructureSelf-assembled in biological fluids;Stabilityunstable, prone to degradation.		Factory-assembled, engineered for reliability and longevity.	
Operating Environment	Inside the human body — wet, conductive, and signal-absorbing.	Dry, open-air — ideal for radio signal transmission.	
Power Source	Harvests ambient EMF or uses body bio- electricity — very low energy budget.	Uses lithium batteries or direct power from wall outlets — strong, stable energy.	
Signal Strength	Weak signal, occasionally emitted (e.g., 1 packet every 2 seconds).	Strong, frequent bursts — e.g., iPhone (3x more), Fitbit (5x more), Bluetooth speakers (many times more).	
Transmission Purpose	Likely passive or minimal signaling, not interactive.	Designed for continuous, stable, high-speed data exchange.	

FINDINGS

• Confirmation of the existence of Bluetooth emissions from the human body

The study registered Bluetooth emissions from the bodies of the test participants. This discovery is in line with the discoveries of all previous studies on this matter like the French study from November 2021, the Mexican study represented in the documentary BlueTruth with release date May 2022, Dr De Benito's study and other explorations.

This study has confirmed that the Bluetooth signals come from bodies of people who have taken the Covid-19 vaccines. All participants in the test group were vaccinated against Covid-19 and none of the control group who did not take the vaccine had a signal. Not all of the vaccinated emit such signals, as some of the vaccines are placebo, but there could be also other factors in effect.

Elimination of the signal from the bodies through the MasterPeace product

The study revealed a clear and persistent over time presence of a Bluetooth emission from the bodies of the test subjects. The signal was registered for three of the participants at two preliminary tests over a period of one month before the baseline date. The signal was registered again at the baseline date of 5th of April 2025 and at the first control test on the 10th of May 2025. The assumed initial date of functioning of this signal is the date of vaccination. Taking into account the period of 3-4 years from the vaccination dates of the study participants, we can assume that there is a strong and stable over time binding connection of the micro elements responsible for the signal with the biological structures of the human body. The first control test conducted on the 10th of May 2025 with 35 days of regular twice daily intake of the product (5 drops per dose) revealed no change in the presence of the signals. This is very indicative of the strong bond of the graphene oxide inside the body and its ability to continue to produce signals when taking into account the previous study of the company which showed after 35 days a 56.1% decrease in the level of graphene oxide in one of the three test subjects and 89.4% in the second (with the third one it increased with 2%). After the first control test, at day 53 of the study, a new increased dosage was assigned to the participants with 15 drops per dose taken twice daily. At the second control date on the 22nd of June, 78 days into the study, no signal was detected in any of the participants. This was in line with the company's study on the graphene oxide levels which revealed further decline of the levels of Graphene oxide at the 90th day mark, namely for Subject 1: from 510 to 131 nmol/L, for Subject 2: from 510 to 66 nmol/L and for Subject 3: from 203 to 149 nmol/L.

Regardless of the specific explanation for how the nano-Bluetooth RF system functions within the human body—whether graphene oxide (GO) acts as the sole and primary building material, or whether GO serves mainly as an antenna in combination with other active semiconductor elements—one conclusion remains consistent: the MasterPeace product effectively eliminates Bluetooth-like emissions from the body by detoxifying and removing the key materials involved in such systems. Notably, MasterPeace has been shown to reduce aluminium levels by 254% and bismuth levels by 186% within just 90 days. Both of these elements are known to play potential roles in nano-scale technologies capable of emitting RF signals.

Having in mind the persistence of the BLE signal in the bodies of the participants over time, the available data with known levels of graphene oxide detoxification from the previous study of the company and the fact that there were no other major changes in the diet and lifestyle of the study participants during the period of the study, we can conclude that the elimination of the signals from the bodies of the participants can be attributed to the intake of the MasterPeace product.

RECOMMENDATIONS

As the phenomenon of the emission of BLE signals from the human bodies raises concerns with the consequences for the human health and independence of the decision making process, we can recommend the conducting of further studies into the field.

LEGAL DISCLAIMER

The information from this research is not intended as a diagnosis, recommended treatment, prevention, or cure for any human condition or medical procedure that may be referred to in any way. Users and readers who may be parents, guardians, caregivers, clinicians, or relatives of persons impacted by any of the morbid conditions, procedures, or protocols that may be referred to, must use their own judgment concerning specific applications. The contributing authors, editors, and persons associated in any capacity with this research disclaim any liability or responsibility to any person or entity for any harm, financial loss, physical injury, or other penalty that may stem from any use or application in any context of information, conclusions, research findings, opinions, errors, or any statements found in this research. The material presented is freely offered to all users who may take an interest in examining it, but how they may choose to apply any part of it, is the sole responsibility of the viewer/user. If material is quoted or reprinted, users are asked to give credit to the source/author, and to conform to the noncommercial, no derivatives, requirements of the Creative Commons License 4.0 NC ND or to any other license that takes precedence over it.